
BookComet Web Application

Project 2: Building and Deploying a Containerized Python Application with
Flask and MongoDB on Azure Kubernetes Service (AKS)

Student Name: Atena Jafari Parsa

Course Name: Database Systems and Cloud Computing

Course Code: AIN3003 (1)

Logo retrieved from: BrandCrowd

https://www.brandcrowd.com/

●​ Table of Contents

●​ Introduction
●​ Abstract
●​ Azure Cosmos DB Set-up & Data Retrieval
●​ Connecting Visual Studio Code to Azure Cosmos DB
●​ Writing the Python Script & Necessary Files for Creating the Web-app
●​ The CRUD Operations
●​ Building the Docker Image and Pushing It to Azure Container Registry (ACR)
●​ Setting Up Azure Kubernetes Service

●​ Introduction
Books are one of the oldest means of sharing knowledge in human history. From ancient scrolls
to kindles, there has always been a similar pattern: words and sentences, symbols, numbers,
visualizations, etc. This shows the importance of finding an effective way to represent, share
and store these blocks of knowledge, called books.
Considering the advances of Information Technology (IT), cloud-based online applications are a
modern and easy way for the users to access books to buy/borrow them for reading.

●​ Abstract
-​ The aim of the project is to build and deploy a Containerized Python Application with

Flask and MongoDB on Azure Kubernetes Service (AKS).
-​ For this purpose, first the data should be retrieved and stored in a proper format (through

Azure CosmosDB Cloud shell (in Javascript)) which has been explained below in Data
Retrieval.

-​ After the extension of MongoDB for Visual Studio Code was installed, and through the
connection string, VSCode was connected to the Azure CosmosDB and the database
was accessed and tested by some sample queries.

-​ Then a python script called app.py was written for the app routes to perform the CRUD
operations. The necessary files including some html templates were also added.

-​ The image containing the python app was built. After logging into the azure account and
the ACR, the image was tagged and pushed to the ACR.

-​ After that, a Kubernetes service and cluster is created on Azure. A single-image web app
is created as the corresponding ACR and the pushed image is selected. The .yaml file is
downloaded, and the app is kept.

-​ Under the Kubernetes resources in the cluster, services and ingresses is selected. After
clicking on the app name, the External IP can be observed.

●​ Azure Cosmos DB Set-up & Data Retrieval

After creating an Azure CosmosDB resource on Azure portal, the Bookstore database is
created. It uses an Azure server in North Europe (Ireland) region.

The documents are then stored to books collection through the cloud shell provided by Azure
Cosmos DB.
The input data initially contained 9 books in the IT category (each document containing the isbn,
the book title, the publish year, the price, number of the pages, the category, the link to the cover
image of the book, the publisher info. (name and location) with 9 distinct authors in total and 6
distinct publishers and their location. Later, more data was retrieved from https://openlibrary.org/
. For the distinction of the added and initial data, the books added later are from categories
different from ‘IT’, e.g. Fantasy, Sci Fi, etc.

For the ease of the process, first the books, then the corresponding publishers and authors
documents are inserted to the collections through Atlas Mongo Shell in this example form:

After all the documents are inserted we check them in the CosmosDB interface or type some
queries to confirm the correct insertion. What I used for books collection to look at the
documents is: db.{books}.find().pretty() after switching to bookstore database.

●​ Connecting Visual Studio Code to Azure Cosmos DB
After having installed the MongoDB extension, the Bookstore database is connected through
the connection string (cosmos uri) that can be found as shown below:

https://portal.azure.com/#@bahcesehir.edu.tr/resource/subscriptions/d52cf2f5-213a-4d1f-991a-0bf766a6a4d8/resourceGroups/AtenaJafariParsa_group/providers/Microsoft.DocumentDB/databaseAccounts/bookcomet/overview
https://openlibrary.org/

The beginning lines in app.py, import the libraries (e.g. flask, jsonify) and connect Visual Studio
Code to the database in Azure Cosmos DB:
from flask import Flask, render_template, request, redirect, url_for, jsonify

from pymongo import MongoClient

app = Flask(__name__)

Replace these values with your Cosmos DB connection string and database/collection

details

cosmos_uri = "**"

client = MongoClient(cosmos_uri)

db = client["bookstore"]

books_collection = db["books"]

●​ Writing the Python Script & Necessary Files for Creating the Web-app
i.e. .dockerignore, app.py, requirements.txt, gunicorn.conf.py, html templates

●​ app.py:
Includes the app routes, the python script for performing CRUD operations on the database.
When the app.py is running, the local website can be accessed. The web app can be accessed
locally on http://127.0.0.1:5001/ .

●​ The html Templates
The .html files were added for providing a simpler and more clear interface for the user.

http://127.0.0.1:5001/

●​ The main html template is index.html which is responsible for the first page that appears
on the website and shows all books. The corresponding app route and function in app.py
for it is

-​ @app.route('/')
-​ def index() #which fetches all books and displays them

●​ The CRUD Operations
Each app route in app.py redirects to one of the html templates:

Create

-​ @app.route('/add_book', methods=['GET', 'POST'])
-​ def add_book()
-​ add_book.html

Let’s add a new book to the database, we’ll get the field values from
https://openlibrary.org/works/OL16325201W/Insurgent .

1.​ Scroll down to the end of the book displays and click on Add a new book

https://openlibrary.org/works/OL16325201W/Insurgent

2.​ Insert the field values in the corresponding boxes for every field, then press Add Book.

3.​ The book has been added to the end of the books and is now displayed on the main

page.

It has also been added as a document to the books collection in bookstore database in
Azure Cosmos DB.

Read
-​ @app.route('/book/<isbn>')
-​ def book_details(isbn):
-​ # Fetches and displays details of a specific book
-​ book_details.html

1.​ For the Read operation, simply click on the title of the book in the main page.

2.​ View all the available information and details on the book, including the cover image:

Update
-​ @app.route('/update_book/<isbn>', methods=['GET', 'POST'])
-​ def update_book(isbn)
-​ update_book.html

1.​ Scroll down to the book you would like to update, then press Update under the

Publisher:

2.​ Update the value, and press Update again. The updates would be applied to the website

and the database in Azure Cosmos DB simultaneously.

Please note that after a book is published in real life, fields like ISBN, book title, publish year
and author’s name cannot be changed. However, values like price, can keep getting updated as
time goes on. This is why the Price field was used for the update operation.

Delete
-​ @app.route('/delete_book/<isbn>', methods=['GET', 'POST'])
-​ def delete_book(isbn)
-​ delete_book.html

1.​ Proceed to the book that has to be deleted and press the Delete button next to Update.

After the Delete button is pressed, the book would be removed immediately both from
the website and from the database.

●​ Building the Docker Image and Pushing It to Azure Container
Registry (ACR)

After confirming that the web app can be accessed locally on http://127.0.0.1:5001/ and works
as desired, the next step is to prepare it for deployment on Azure Kubernetes Service (AKS).
In order to do that, the python application should be containerized in a Docker image and
pushed to ACR.

After deciding the image name, this command should be run in the terminal in the same
directory as the project for the Docker image to be built:
docker build -t mybookstore .

After logging in to the azure account and the ACR (by using the Access Keys), and tagging
(docker tag mybookstore myregistry2024p.azurecr.io/mybookstore) the Docker image should be
pushed to the container: docker push myregistry2024p.azurecr.io/mybookstore

●​ Setting Up Azure Kubernetes Service

After logging in to Azure portal, a Kubernetes Service resource named BookComet_Cluster is
created. Then, a single image web app is created and the container (MyRegistry2024P) and the
image is selected. An automatic .yaml file (YAML_5.text) is then created for the deployment.
Keep is selected for the app.

http://127.0.0.1:5001/
https://portal.azure.com/#@bahcesehir.edu.tr/resource/subscriptions/d52cf2f5-213a-4d1f-991a-0bf766a6a4d8/resourceGroups/AtenaJafariParsa_group/providers/Microsoft.ContainerService/managedClusters/Bookstore2024/overview

●​ How to access the deployed app
BookComet_Cluster is selected, then, under kubernetes resources, the option services and
ingresses is selected. The service (bookstore-service) is selected and eventually, the External
IP. This is how the deployed app could be accessed.

http://bookcomet.northeurope.cloudapp.azure.com/

http://bookcomet.northeurope.cloudapp.azure.com/

	BookComet Web Application
	Student Name: Atena Jafari Parsa
	Course Name: Database Systems and Cloud Computing
	Course Code: AIN3003 (1)
	●​Table of Contents
	●​Introduction
	●​Abstract
	●​Azure Cosmos DB Set-up & Data Retrieval
	●​Connecting Visual Studio Code to Azure Cosmos DB
	●​Writing the Python Script & Necessary Files for Creating the Web-app
	●​app.py:
	●​The html Templates

	●​The CRUD Operations
	Create
	Read
	Update
	Delete
	
	●​Building the Docker Image and Pushing It to Azure Container Registry (ACR)
	●​Setting Up Azure Kubernetes Service
	●​ How to access the deployed app

