
BAU-EVAL: LLM-Based Personalized Assignment Evaluator
#1011022

Süleyman Kaan Ataç
Beyza Bayrak

Atena Jafari Parsa
Aleyna Kurt

CAPSTONE PROJECT PRESENTATION

Advisors:
Dr. Binnur Kurt - Department of Artificial Intelligence Engineering

Dr. Fatih Kahraman - Department of Artificial Intelligence Engineering

CONTENTS

1-Introduction
2-Requirements
3-Conceptual Solutions
4-Physical Architecture
5-Flowchart
6-Work Breakdown Structure (WBS)
7-Responsibility Matrix (RM)
8-Project Network (PN)
9-Gantt Chart

10-Data Preparation
11-LLM Subsystem
12-Backend
13-Frontend
14-Integration
15-Verification
16-Reporting
17-Conclusion

Introduction

This project aims to build an LLM-powered assessment platform for
students and instructors in courses like programming, artificial
intelligence, and machine learning. The platform generates quizzes
and exams, administers time-bound evaluations, and delivers fast,
fair feedback to enhance individual learning outcomes.

Conceptual Solutions
Concept 1: Using ready-to-use LLM
Concept 2: Open-source LLM
Concept 3: Closed-source LLM
Concept 4: Hybrid System with Feedback Mechanism
Concept 5: Designing Specialized LLM

Comparison of the Conceptual Solutions.

Functional Requirements
Question Generation for Quiz and Exam Generation
Evaluation and Feedback
Managing the Evaluations

 Performance Requirements
Accuracy
Time
Scalability
Availability

Requirements

Physical Architecture
The BAU-EVAL architecture is divided into two subsystems:

LLM Subsystem
Full Stack Subsystem

Flowchart

Work Breakdown Structure (WBS)

Responsibility Matrix (RM)

Project Network (PN)

Gantt Chart

Data Preparation and Fine-Tuning

Data Preparation

Fine-Tuning

LLM Subsystem

LLM subsystem focused on question generation
and evaluation using Hybrid LLM system with
Feedback Mechanism and Open Source LLM.

In this module, a LLM system is developed. In accordance with the course
material on programming and artificial intelligence, the LLM has been used to
create quizzes and exams and assess student answers. It is able to evaluate
open-ended submissions as well as open-ended responses and also provides
feedback to submitted quizzes and exams for students.

LLM Subsystem

LLM Subsystem

Deployment of a LLM subsystem:
Extensions used:

LLM: Ollama, Llama 3, Mistral, Gemma, Phi3, LangChain (or similar LLM
frameworks)

Conversational AI GUIs AI Integration: Hugging Face API,
TensorFlow/PyTorch

Example of Fine-tuning Generation

Pre-trained Model Responses

Backend Architecture

The backend serves as the central processing unit for LLM-Based
Assignment Evaluator.
It securely manages user accounts, quiz and exam submissions.
It interacts with the LLM to generate questions and provide evaluations
It provides real-time feedback to students.

Core Backend Modules

API: Provides a communication interface between the frontend and
backend.
Database: Securely stores user data, quizzes, exams, and evaluation
results.
LLM Integration Module: Manages communication and data exchange
with the Large Language Model (LLM).
Authentication/Authorization Module: Secures user access and
permissions.
Verification Module (Instructor Validation): Instructors validate LLM-
generated assessments ensuring fairness and accuracy.

Backend: FastAPI
Frontend: HTML, CSS for Style, Javascript
Database management: MongoDB, Docker
Containerization: Docker
Cloud: Azure

Technology Platforms

 API Design

Communicating with the Backend
RESTful API was used for efficient communication using FastAPI.
Endpoints were designed for user authentication, exam and quiz
submission, evaluation requests, and feedback retrieval.

Frontend

Dynamic interface; effortlessly interaction for users
Real-time response and feedback

Modern User Interface

Fast question/answer generation and instant feedback
Tests showed that generating a question takes about 2.1 seconds; grading takes
1 second; feedback takes approximately 2.5 seconds per question.

Managing high number of users simultaneously

Tests showed that the system can handle 1000 users at once successfully.

Scability and Speed

Clear dashbord for instructions to monitor
Easy to navigate for students

Enhanced User Experience

Integration
Data Flow

Frontend

Input

Backend

Database

LLM
Subsystem

Integration
Prompt Processing

Backend
Prompt Engineering

Module

LLM subsystem

The Backend sends the processed data to the Prompt Engineering module in
the LLM subsystem, where prompts are created and preprocessed for the
LLM.

Integration

APIs and Endpoints
Establishing robust APIs between the Backend and the LLM subsystem to ensure
efficient and error-free data transfer.

Data Consistency and Integrity
Ensuring that the data remains consistent and intact throughout the process,
from initial input through to final output.

Verification

Various tests were conducted to verify the LLM
model’s accuracy in generating and scoring questions.
RAG allowed the system to generate high-quality,
context-aware questions directly from instructional
materials.

Accuracy and Efficieny

Tested for 1000+ users simultaneously
Consistent accessibility with 99.9% uptime guarentees

Scalability and Availability

Reporting
The system comprises of three core components:

An LLM model API with the option to upload relevant course materials to ensure
accurate and unbiased evaluations.
A web-based personalized examination panel providing a seamless and user-
friendly interface for students to take quizzes and exams with provided
feedbacks and auto-grading, as well as a panel for instructors for course setup,
exam/quiz generation and preview and manual grade updates.
A cloud-native backend providing scalable and secure infrastructure to manage
data, handle LLM interactions, and deliver results.

The intended users of this platform are students and instructors in various courses at
the university level.

LLM Performance Limitations
LLM Cost and Resource Constraints
LLM API Limitations
Maintaining LLM Up-to-Date (for future)

1. LLM-Related Challenges

Challenges, Limitations and Setbacks

2. Backend Development Challenges
Database Scalability Limitations
Testing Challenges
Integration Complexity
Security Vulnerabilities

3. Frontend Development Challenges
User Interface Design Limitations
Frontend Responsiveness and Performance

4. Overall Project Management Challenges
Time Constraints
Resource Constraints
Teamwork and Communication Challenges

5. Data Challenges
Data Acquisition and Preparation Challenges
Data Privacy and Security Concerns

Conclusion
Objective

 Develop a quiz, exam generation and assessment system with
feedbacks using LLM technology for Bahçeşehir University

Achievements
Automated the generation and evaluation of exams and quizzes.
Integrated cutting-edge LLM with full-stack development
Implemented a LLM system with optional RAG implementation to get
content related results.

Conclusion

Future Directions
Further enhancements based on user feedback and technological
advancements.
Expand system capabilities to enhance educational outcomes and
learning experiences.

Impact: Streamlined assessment processes and improved educational
outcomes through AI-driven personalization and efficiency to set a
new standard for educational excellence

C.-H. Chiang, W.-C. Chen, C.-Y. Kuan, C. Yang, and H.-Y. Lee, “Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course”, [Online].
Available: https://aclanthology.org/2024.emnlp-main.146.pdf [Accessed: Dec. 21, 2024].

Y.-T. Lin and Y.-N. Chen, “LLM-EVAL: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models”, [Online]. Available:
https://arxiv.org/pdf/2305.13711 [Accessed: May 23, 2023]

Y. Liu et al.,” Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators”, [Online]. Available: http://arxiv.org/pdf/2403.16950 [Accessed: Aug. 10,
2024].

D. Hirunyasiri, D. R. Thomas, J. Lin, K. R. Koedinger, and V. Aleven, “Comparative Analysis of GPT-4 and Human Graders in Evaluating Praise Given to Students in Synthetic Dialogues”,
[Online]. Available: https://arxiv.org/pdf/2307.02018 [Accessed: Jul. 05, 2023].

Z. Chu, Q. Ai, Y. Tu, H. Li, and Y. Liu, “PRE: A Peer Review Based Large Language Model Evaluator”, [Online]. Available: https://arxiv.org/pdf/2401.15641 [Accessed: Jun. 03, 2024].

K. D. Dunnell, T. Painter, A. Stoddard, and A. Lippman, “Latent Lab: Large Language Models for Knowledge Exploration”, [Online]. Available: https://arxiv.org/pdf/2311.13051 [Accessed: Nov.
21, 2023].

X. Yue et al., “A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI” , [Online]. Available: https://mmmu-benchmark.github.io [Accessed: Sep. 05,
2024].

M. Fariz, S. Lazuardy, and D. Anggraini, “Modern Front End Web Architectures with React.Js and Next.Js,” International Research Journal of Advanced Engineering and Science, [Online].
Available: https://irjaes.com/wp-content/uploads/2022/02/IRJAES-V7N1P162Y22.pdf [Accessed: 2022].
R. Sawhney, Beginning Azure Functions: Building Scalable and Serverless Apps. 2019.

A. Luca, “POLITECNICO DI TORINO User Interface Development of a Modern Web Application Candidate Marzieh SOMI,” Available: https://webthesis.biblio.polito.it/secure/30076/1/tesi.pdf
[Accessed: 2021].

REFERENCES

Thank you

