
Library Web System
Spring Boot Web-App

Course Name & Code: Web Programming - SEN3004

Authors:

●​ Atena Jafari Parsa
●​ Baraah Ammar Mohammed Al-shiaani

Logo Retrieved from: https://www.brandcrowd.com/

https://www.brandcrowd.com/

●​ Project Aim

The Library Web System is a Spring Boot web application that performs CRUD operations on
books.
The desired books can be selected and borrowed by the user until a specified date.
Two books have been borrowed by default and the due date is set to be one month after the date
that the book was borrowed.

If the user borrows a book, the default due date would be two weeks after the day the book was
borrowed. However, the due date can be adjusted by the user to any date after the borrow date.

The application has two main sections:

1.​ The Admin Section
The home page will ask for the role of the end-user. If Admin is selected, the admin will be able
to view and search among all existing books, add a new book and edit or delete the existing
books. All the changes applied will be applied to the database simultaneously.

2.​ The User Section
The user will be able to view and search among all the books, except the ones that have been
deleted by the admin. The user will be able to borrow a book that has not already been borrowed
and by default, the due date would be 14 days after the borrow date but the date can be modified
by the user to any date after the borrow date. The user will also have the option to view the
details all the books that have been borrowed apart from the borrow and due date.

●​ General Walkthrough of the Project

Index Page :

●​ The index page, often the main landing page of the website, could serve as a starting
point for users:

○​ Introduction to the library system and its functionalities.
○​ Information about browsing and searching for books.
○​ Links to navigate to specific sections like the admin page and user page.

In the home page, the end-user is asked to
specify his/her role. If the admin button is chosen, the user would be redirected to the admin
page, if the user button is chosen the user would be redirected to the user page (The procedure
will be explained in Functionalities.)

User Page :

○​ Viewing a list of available books (potentially with search and filter options).
○​ Searching for books by title using a search bar.
○​ Borrowing books: Users will be able to select books and initiate a borrowing

process.
○​ Viewing their borrowing history: This shows a list of borrowed books and their

due dates.

Admin Page:

●​ The admin page allows for managing the book collection:
○​ Viewing a list of all books with details like title, author, ISBN, genre, and cover

image.
○​ Searching for books by title using a search bar.
○​ Editing existing books by clicking an "Edit" button, which redirects to an edit

page with the book ID.
○​ Deleting books with confirmation prompts.
○​ Adding new books through a dedicated form.

Adding Books:

●​ A separate "Add Book" page provides a form for entering new book details, including
title, author, ISBN, genre, publish year and cover image URL.

●​ Upon form submission, the system sends a POST request to the server to add the new
book.

●​ According to the code, the fields title, author and isbn are required fields. The publish
year is an integer so only numerical values will be accepted. Also, it must be in range
[1900, 2024].

The code above shows the constraints applied to the input when adding a new book.

Editing Book Details:

●​ An edit option for each book exists for the admin which provides a form for editing the
existing book details, including title, author, ISBN, genre, publish year and cover image
URL.

●​ The system sends a PUT request to the server to edit the selected book.
●​ The same constraints as adding a new book are applied when editing an existing book.

Book Management:

●​ The BookController provides a REST API for managing books:
○​ Retrieving a list of all books (/api/books).
○​ Searching books by title (/api/books/search).
○​ Retrieving details of a specific book (/api/books/{id}).
○​ Adding a new book (/api/books/add).
○​ Updating an existing book (/api/books/edit/{id}).
○​ Deleting a book (/api/books/delete/{id}).

Borrowing System:

●​ The LoanController manages book borrowing through a dedicated API:
○​ Borrowing a book (/api/loans/borrow) requires sending a request with book ID,

borrowed date, and due date.
○​ Retrieving a list of borrowed book IDs (/api/loans/borrowed).

How This Connects to Other Parts(repository classes):

●​ The BookController likely interacts with this BookRepository to implement
functionalities like:

○​ Retrieving all books (findAll() method of JpaRepository).
○​ Searching books by title (findByTitleContainingIgnoreCase custom method).

○​ Saving new or updated books (save() method of JpaRepository).

●​ The LoanController (and potentially the BookController) interact with this
LoanRepository to implement functionalities like:

○​ Checking if a book is available for borrowing before allowing a borrow request
(using isBookBorrowed).

getAllBooks: This method retrieves a list of all books from the BookRepository using the
findAll() method (provided by Spring Data JPA). It returns this list of Book objects to the caller
(the BookController).​

getBookById: This method takes a Long parameter representing the book ID. It retrieves the
book with the matching ID from the BookRepository using the findById(id) method. If a book is
found, it returns the Book object. Otherwise, it returns null.​

saveBook: This method takes a Book object as a parameter. It likely performs some validation or
processing before delegating the actual saving task to the BookRepository using the save(book)
method. This method persists the book data in the database and returns the saved Book object.​

deleteBook: This method takes a Long parameter representing the book ID. It delegates the task
of deleting the book with the matching ID to the BookRepository using the deleteById(id)
method.​

searchBooksByTitle: This method takes a String parameter representing the book title (or a part
of it). It utilizes the custom method findByTitleContainingIgnoreCase provided by the
BookRepository to search for books whose titles contain the search term (ignoring case
sensitivity). It returns a list of Book objects matching the search criteria.

Loan service

●​ These methods (getAllLoans, getLoanById, saveLoan, deleteLoan) provide basic CRUD
functionalities for loan data but might not be directly used by the controllers you shared
earlier.

getOverdueLoans:

●​ This method retrieves a list of all loans (findAll from LoanRepository).
●​ It uses Java Streams to filter this list, keeping only loans where the isOverdue method of

the Loan class returns true (likely indicating loans that have passed their due date).
●​ Finally, it collects the filtered loans into a new list using Collectors.toList().

borrowBook:

●​ This method takes three parameters:
○​ bookId: ID of the book to be borrowed.
○​ borrowedDate: Date the book is borrowed.
○​ dueDate: Date the book is due for return.

●​ It first checks if the book exists using bookRepository.findById(bookId).
●​ If the book is not found, it throws an IllegalArgumentException with a message

indicating the issue.
●​ If the book is found, it creates a new Loan object with the provided book, borrowed date,

and due date.
●​ Finally, it saves the new loan entity using loanRepository.save(loan) and returns the saved

Loan object.

getBorrowedBookIds:

●​ This method retrieves all loans (findAll from LoanRepository).
●​ It uses Java Streams to:

○​ Map each loan to its corresponding book's ID using loan.getBook().getId().
○​ Remove duplicates using distinct().
○​ Collect the list of unique borrowed book IDs using Collectors.toList().

●​ Database Schema Diagram

●​ To add the in-memory h2 database, application.properties is modified accordingly:

1.​ spring.application.name=Library-Web-System
2.​ spring.h2.console.enabled=true
3.​ spring.datasource.url=jdbc:h2:mem:LibraryWebDatabase
4.​ spring.datasource.driverClassName=org.h2.Driver
5.​ spring.datasource.username=sa
6.​ spring.datasource.password=

7.​ spring.jpa.show-sql=true
8.​ spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.H2Dialect
9.​ spring.jpa.hibernate.ddl-auto=update

In line 3, the database LibraryWebDatabase
 is created. In line 6, the password is set to default (i.e., empty). According to line 9,
tables will be generated automatically when new data is added.

●​ After running LibraryWebSystem1Application.java as a Spring Boot App, we can
use the url http://localhost:8080/h2-console to access the H2 database. After
testing the connection, “Test Successful” should be displayed as shown below.

Database name is LibraryWebDatabase. After the successful connection, the database
will be connected.

●​ The data is stored in two tables, TBL_BOOKS & TBL_LOANS.

http://localhost:8080/h2-console

As shown above, the TBL_BOOKS table stores the book details.

The TBL_LOANS table stores the book id of the borrowed book and the date the book
was borrowed and the due date.

The tables are joined on BOOK_ID as shown in the figure below in Schema.sql.

The sample data was stored in the database in Data.sql as shown below:

All the sample data was retrieved from https://openlibrary.org/

https://openlibrary.org/

●​ Functionalities
●​ Book Controller

The functions are retrieved from Book Service and the CRUD operations can be performed on
the database according to the functions below. The additional search function is also added.

●​ Book Entity
Here we have the constructor for book object and again, we map the two tables via book id and
we implement getters and setters. isbn was changed to string as integer variable did not have as
much capacity.

●​ DTO.java
The Data Transfer object is used to fetch and store the data from both tables (tbl_books &
tbl_loans) and store them all in the same object in order to form a collection. The purpose of this
is explained below in Home Controller.

●​ Home Controller

The Home Controller manages the necessary redirections to the proper html file. It also adds the
DTO collection as an attribute to the model and redirects user to borrow.html in case the user
wants to view the borrowed books.

●​ Book Service
Book Service implements the necessary functions to interact with the database.

	Library Web System
	Spring Boot Web-App
	Course Name & Code: Web Programming - SEN3004
	Authors:
	●​Atena Jafari Parsa
	●​Baraah Ammar Mohammed Al-shiaani

