Library Web System
Spring Boot Web-App

Course Name & Code: Web Programming - SEN3004
Authors:

e Atena Jafari Parsa
e Baraah Ammar Mohammed Al-shiaani

S

LIBRARY WEB SYSTEM
SPRING BOOT WEB APPLICATION

JOURNEY THROUGH PAGES.

Logo Retrieved from: https://www.brandcrowd.com/

https://www.brandcrowd.com/

e Project Aim

The Library Web System is a Spring Boot web application that performs CRUD operations on
books.

The desired books can be selected and borrowed by the user until a specified date.

Two books have been borrowed by default and the due date is set to be one month after the date
that the book was borrowed.

If the user borrows a book, the default due date would be two weeks after the day the book was
borrowed. However, the due date can be adjusted by the user to any date after the borrow date.

The application has two main sections:

1. The Admin Section
The home page will ask for the role of the end-user. If Admin is selected, the admin will be able
to view and search among all existing books, add a new book and edit or delete the existing
books. All the changes applied will be applied to the database simultaneously.

2. The User Section
The user will be able to view and search among all the books, except the ones that have been
deleted by the admin. The user will be able to borrow a book that has not already been borrowed
and by default, the due date would be 14 days after the borrow date but the date can be modified
by the user to any date after the borrow date. The user will also have the option to view the
details all the books that have been borrowed apart from the borrow and due date.

e General Walkthrough of the Project

Index Page :

e The index page, often the main landing page of the website, could serve as a starting
point for users:
o Introduction to the library system and its functionalities.
o Information about browsing and searching for books.
o Links to navigate to specific sections like the admin page and user page.

\ s

LIBRARY WEB SYSTEM
SPRING BOOT WEB APPLICATION

JOURNEY THROUGH PAGES

Welcome to the Library!

Borrow books, manage your account, and explore new titles!

Are you an admin or a user?

An admin can add new books, edit or delete the existing books
besides viewing and searching among them.

A user can view the existing books, search for a specific book and
borrow books for a limited time interval.

In the home page, the end-user is asked to
specify his/her role. If the admin button is chosen, the user would be redirected to the admin
page, if the user button is chosen the user would be redirected to the user page (The procedure
will be explained in Functionalities.)

User Page :

Viewing a list of available books (potentially with search and filter options).
Searching for books by title using a search bar.
Borrowing books: Users will be able to select books and initiate a borrowing
process.

o Viewing their borrowing history: This shows a list of borrowed books and their
due dates.

Admin Page:

Welcome to the User Page!

can view and . and manage your
books.

Borrowed Books

. Tite: A Gourof it and Fry

Author: Sarah J. Maas
ISBN: 1526617161
Genre: Fantasy
Borrowed Date: 2024-05-01
11 Update Due
Date

Title: Introduction to Literature
Author: Dr Craig Edwards
ISBN: 9781323421895
Genre: Textbook

Borrowed Date: 2024-05-10

Available Books:

Title: A Court of Mist and Fury
. Maas.

11 Update Due
Date
Author: Sarah J.

re: Fantasy
Publish Year: 2020

. s

Author: Dr Craig Edwards

ISBN: 6781323421605 B3
Genre: Textbook

Publish Year: 2016

e The admin page allows for managing the book collection:

o

Viewing a list of all books with details like title, author, ISBN, genre, and cover
image.

Searching for books by title using a search bar.

Editing existing books by clicking an "Edit" button, which redirects to an edit
page with the book ID.

Deleting books with confirmation prompts.

Adding new books through a dedicated form.

Welcome to the Admin Page!

Here you can add a new book, edit and delete the existing books.
Search for a book by its title, or scroll down to view all books.

All Available Books:

Tnle A Court of Mist
b - | -
ISEN 1526517161
antasy
Publlsh Year: 2020

Title: Introduction to

Literature

Arcbe

we e

Adding Books:

e A separate "Add Book" page provides a form for entering new book details, including
title, author, ISBN, genre, publish year and cover image URL.

e Upon form submission, the system sends a POST request to the server to add the new
book.

e According to the code, the fields title, author and isbn are required fields. The publish
year is an integer so only numerical values will be accepted. Also, it must be in range
[1900, 2024].

Add a New Book to the Library

Please fill in the form below with the information of the book you would
like to add.

Enter the title of the book
Enter the author name

Enter the ISBN

Enter the genre

Enter the cover image URL

Enter the year the book was published

class=
Add a New Book to the Library
class= Please fill in the form below with the information of the book you would like to add.
class=

placeholder= class= type= required
placeholder= class= type= required
placeholder= class= type= required
placeholder= class= type=
placeholder= class= type=
placeholder= class= type= required

Submit

The code above shows the constraints applied to the input when adding a new book.
Editing Book Details:

e An edit option for each book exists for the admin which provides a form for editing the
existing book details, including title, author, ISBN, genre, publish year and cover image
URL.

The system sends a PUT request to the server to edit the selected book.
The same constraints as adding a new book are applied when editing an existing book.

class=
Edit Book
class= Edit the details of the book below and click Submit to save changes.
id=
id= placeholder= class= type=
id= placeholder= class= type=
id= placeholder= class= type=

id= placeholder= class= type=

id= placeholder= class=
id= placeholder= class=
type= Submit

Edit the details of the book below and click Submit to save changes.

Edit Book

Book Management:

e The BookController provides a REST API for managing books:

o

o O O O O

Retrieving a list of all books (/api/books).

Searching books by title (/api/books/search).
Retrieving details of a specific book (/api/books/{id}).
Adding a new book (/api/books/add).

Updating an existing book (/api/books/edit/{id}).
Deleting a book (/api/books/delete/{id}).

Borrowing System:

e The LoanController manages book borrowing through a dedicated API:

o

o

Borrowing a book (/api/loans/borrow) requires sending a request with book 1D,
borrowed date, and due date.
Retrieving a list of borrowed book IDs (/api/loans/borrowed).

How This Connects to Other Parts(repository classes):

o The BookController likely interacts with this BookRepository to implement
functionalities like:

o
o

Retrieving all books (findAll() method of JpaRepository).
Searching books by title (findByTitleContaininglgnoreCase custom method).

o Saving new or updated books (save() method of JpaRepository).

e The LoanController (and potentially the BookController) interact with this
LoanRepository to implement functionalities like:
o Checking if a book is available for borrowing before allowing a borrow request
(using isBookBorrowed).

getAllBooks: This method retrieves a list of all books from the BookRepository using the
findAll() method (provided by Spring Data JPA). It returns this list of Book objects to the caller
(the BookController).

getBookByld: This method takes a Long parameter representing the book ID. It retrieves the
book with the matching ID from the BookRepository using the findByld(id) method. If a book is
found, it returns the Book object. Otherwise, it returns null.

saveBook: This method takes a Book object as a parameter. It likely performs some validation or
processing before delegating the actual saving task to the BookRepository using the save(book)
method. This method persists the book data in the database and returns the saved Book object.

deleteBook: This method takes a Long parameter representing the book ID. It delegates the task
of deleting the book with the matching ID to the BookRepository using the deleteByld(id)
method.

searchBooksByTitle: This method takes a String parameter representing the book title (or a part
of it). It utilizes the custom method findByTitleContaininglgnoreCase provided by the
BookRepository to search for books whose titles contain the search term (ignoring case
sensitivity). It returns a list of Book objects matching the search criteria.

Loan service

e® These methods (getAllLoans, getLoanByld, savelLoan, deleteLoan) provide basic CRUD
functionalities for loan data but might not be directly used by the controllers you shared
earlier.

getOverdueloans:

This method retrieves a list of all loans (findAll from LoanRepository).
It uses Java Streams to filter this list, keeping only loans where the isOverdue method of
the Loan class returns true (likely indicating loans that have passed their due date).

e Finally, it collects the filtered loans into a new list using Collectors.toList().

borrowBook:

e This method takes three parameters:
o bookld: ID of the book to be borrowed.
o borrowedDate: Date the book is borrowed.
o dueDate: Date the book is due for return.
It first checks if the book exists using bookRepository.findByld(bookId).
If the book is not found, it throws an Illegal ArgumentException with a message
indicating the issue.
e If the book is found, it creates a new Loan object with the provided book, borrowed date,
and due date.
e Finally, it saves the new loan entity using loanRepository.save(loan) and returns the saved
Loan object.

getBorrowedBooklds:

This method retrieves all loans (findAll from LoanRepository).

It uses Java Streams to:
o Map each loan to its corresponding book's ID using loan.getBook().getld().
o Remove duplicates using distinct().
o Collect the list of unique borrowed book IDs using Collectors.toList().

e Database Schema Diagram

e To add the in-memory h2 database, application.properties is modified accordingly:

spring.application.name=Library-Web-System
spring.h2.console.enabled=true
spring.datasource.url=jdbc:h2:mem:LibraryWebDatabase
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa

AN

spring.datasource.password=

>

spring.jpa.show-sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect. H2 Dialect
spring.jpa.hibernate.ddl-auto=update

In line 3, the database LibraryWebDatabase
is created. In line 6, the password is set to default (i.e., empty). According to line 9,
tables will be generated automatically when new data is added.

e After running LibraryWebSystem1Application.java as a Spring Boot App, we can
use the url http://localhost:8080/h2-console to access the H2 database. After
testing the connection, “Test Successful” should be displayed as shown below.

English &) Preferences Tools Help

Saved Settings: Generic H2 (Embedded)
Setting Name: Ggneric H2 (Embedded) Save| |Remove
Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:mem:LibraryWebDatabase

User Name: sa

Password:

Connect Test Connection

Test successful

Database name is LibraryWebDatabase. After the successful connection, the database
will be connected.

e The data is stored in two tables, TBL BOOKS & TBL LOANS.

http://localhost:8080/h2-console

] jdbc:h2:mem:LibraryWebDatabas | Run| |Run Selected | Auto complete | |Clear| SQL statement:

] TBL_BOOKS

] TBL_LOANS

] INFORMATION_SCHEMA
{4 Users

(D) H2 2.2.224 (2023-09-17)

SELECT * FROM TBL_BOOKS

3 E B E

SELECT * FROM TBL_BOOKS;

ID TITLE AUTHOR ISBN GENRE COVER_IMAGE_URL PUBLISH_YEAR
1 |ACourt of Mist and Fury Sarah J. Maas 1526617161 Fantasy https:/icovers.openlibrary.org/b/id/14624404-L jpg 2020
2 |Introduction to Literature Dr Craig Edwards 9781323421895 Textbook https:/icovers.openlibrary.org/b/id/14556589-L jpg 2016
3 |Ignite Me Tahereh Mafi 0062085573 Science Fiction https://covers.openlibrary.org/b/id/7272906-L.jpg 2014
4 Twisted Games Ana Huang 9781087886657 C vy R https:/icovers ary.org/blid/12821465-L jpg 2021
5 | Esperanza (Spirit of the West, #3) Kathleen Duey 0525468595 Fiction https:/icovers.openlibrary.org/bfid/361309-L.jpg 2002
6 |Economics of Regulation and Antitrust W. Kip Viscusi 026222075X Economics https://covers.openlibrary.org/b/id/150858-L.jpg 2005
7 ' Marc Camille Chaimowicz: Celebration?: Relife. “Tom Holert 1846380294 Performance Art https://covers.openlibrary.org/b/id/12661338-L.jpg 2007
8 The History of Cinema Geoffrey Nowell-Smith 0198701772 | History https://covers.openlibrary.org/b/id/8832350-L.jpg 2018
9 | Taking Flight Sheena Wilkinson 9781554553280 Childrens Fiction https://covers.openlibrary.org/b/id/108 11849-L.jpg 2010
10 Learning Spring Boot 3.0 Greg L. Turnquist 978-1803233307 Textbook https://m.media-amazon.com/images/1/61t3Z9ty8sL._AC_UF 1000,1000_QL80_.jpg (2014
11 |HTML5 and CSS3, lllustrated Complete (Second Ed.) Sasha Vondik 978-1305394049 Textbook https://m.media-amazon.com/images/I/81hh-ywIN4L._AC_UF1000,1000_QL80_.jpg 2011

(11 rows, 4 ms)

As shown above, the TBL BOOKS table stores the book details.

.| jdbc:h2:mem:LibraryWebDatabas |Run| |Run Selected |Auto complete| |Clear SQL statement:

+ [TBL_BOOKS

[TBL_LOANS

] INFORMATION_SCHEMA
{§ Users

(1) H22.2.224 (2023-09-17)

SELECT * FROM TBL_LOANS

SELECT * FROM TBL_LOANS;
ID BOOK_ID BORROWED_DATE DUE_DATE
1 [2024-05-01 2024-06-01

2 |2 2024-05-10 2024-06-10
(2 rows, 4 ms)

The TBL LOANS table stores the book id of the borrowed book and the date the book

was borrowed and the due date.

The tables are joined on BOOK_ID as shown in the figure below in Schema.sql.
=

€ .) Limit to 1000 rows 8

1 e © CREATE TABLE IF NOT EXISTS tb1l_books (

2 id BIGINT AUTO_INCREMENT PRIMARY KEY,
3 title VARCHAR(255),

4 author VARCHAR(255),

5 isbn VARCHAR(255),

6 genre VARCHAR(255),

7 cover_image_url VARCHAR(255),

8 publish_year INTEGER

9 ~);

11 ®) CREATE TABLE IF NOT EXISTS tbl_loans (

12 id BIGINT AUTO_INCREMENT PRIMARY KEY,

13 book_id BIGINT NOT NULL,

14 - borrowed_date DATE NOT NULL,

15 due_date DATE NOT NULL,

16 FOREIGN KEY (book_id) REFERENCES tbl_books(id)

The sample data was stored in the database in Data.sql as shown below:

|# oaa ‘
[~H=] Q Limit to 1000 rows 8 % vQEE
1 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES
2 ('A Court of Mist and Fury', 'Sarah J. Maas', '1526617161', 'Fantasy', 'https://covers.openlibrary.org/b/id/14624404-L.jpg’, 2020);
3
4 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES
5 ('Introduction to Literature', 'Dr Craig Edwards', '9781323421895', 'Textbook', 'https://covers.openlibrary.org/b/id/14556589-L.jpg", 2016);
6
7 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES
8 ('Ignite Me', 'Tahereh Mafi', '0062085573', 'Science Fiction', 'https://covers.openlibrary.org/b/id/7272906-L.jpg", 2014);
9

mage_url, publish_year) VALUES

10 e INSERT INTO tbl_books (title, author, isbn, genre, cover.

1 ('Twisted Games', 'Ana Huang', '97810 7', 'Conten y Romance', 'https://covers.openlibrary.org/b/id/12821465-L.ipg", 2021);

12

13

14 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

15 ('Esperanza (Spirit of the West, #3)', 'Kathleen Duey', '0525468595', 'Fiction', 'https://covers.openlibrary.org/b/id/361309-L.jpg', 2002);
16

17 INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

18 ('Economics of Regulation and Antitrust', 'W. Kip Viscusi', '026222075X', 'Economics', 'ht //covers.openlibrary.org/b/id 58-L.jpg’, 2005);

19

20 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

21 ('Marc Camille Chaimowicz: Celebration?: Rel ', 'Tom Holert', '1846380294', 'Pe Art', s.openlibrar b/1d/12661338-L.jpg"', 2007);

22

23 ® INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

24 ('The History of Cinema', 'Geoffrey Nowell-Smith', '0198701772', 'History', 'https://covers.openlibrary.org/b/id/8832350-L.jpg', 2018);

25

26 o INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

27 ('Taking Flight', 'Sheena Wilkinson', ' 5 80', 'Childrens Fiction', 'https://covers.openlibrary.org/b/id/10811849-L.jpg', 2010);

28

29 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

30 ('Learning Spring Boot 3.0', 'Greg L. Turnquist', '978-1803233307', 'Textbook', 'https://m.media-amazon.com/images/I/61t3Z9ty8sL._AC_UF1000,1000_QL80_.jpg', 2014);
31

32 e INSERT INTO tbl_books (title, author, isbn, genre, cover_image_url, publish_year) VALUES

33 ('HTML5 and €SS3, Illustrated Complete (Second Ed.)', 'Sasha Vondik', '978-130 , 'Textbook', 'https://m.media-amazon.com/images/I/81hh-ywIN4L._AC_UF1000,1000_QL80_.jpg', 2011);
34

35 e INSERT INTO tbl_loans (book_id, borrowed_date, due_date) VALUES

36 (1, '2024-05-01', '2024-06-01'),

37 (2, '2024-05-10', '2024-06-10');

All the sample data was retrieved from https://openlibrary.org/

https://openlibrary.org/

e Functionalities
e Book Controller
The functions are retrieved from Book Service and the CRUD operations can be performed on

the database according to the functions below. The additional search function is also added.
com.example.demo.Controllers;

org.springframework.beans. factory.annotation.Autowired;

@RestController
@RequestMapping("/api/books")
{

@Autowired
bookService;

@GetMapping
List< > () {
bookService.getAllBooks();

}

@GetMapping("/{id}")
(@PathVariable id) {
bookService.getBookById(id);

@PostMapping("/add")
< > (@RequestBody book) {
savedBook = bookService.saveBook(book);
(savedBook != R

{

.ok (savedBook) ;

.status(HttpStatus.INTERNAL_SERVER_ERROR) .build();

@PutMapping("/edit/{id}")
(@PathVariable id, @RequestBody book) {
book.setId(id);
bookService.saveBook(book);
}

@DeleteMapping("/delete/{id}")
(@PathVariable
bookService.deleteBook(id);

@GetMapping("/search")
List< > (@RequestParam title) {
bookService.searchBooksByTitle(title);

}

e Book Entity
Here we have the constructor for book object and again, we map the two tables via book id and
we implement getters and setters. isbn was changed to string as integer variable did not have as
much capacity.

"tb1_books")
{

@GeneratedValue(nType.IDENTITY)
id;

itiEle;
author;
isbn;
genre;
publish_year;

@0oneToMany (= "book", = CascadeType.ALL)
List<! > loans;

= "cover_image_url")
coverImageUrl;

e DTO.java
The Data Transfer object is used to fetch and store the data from both tables (tbl_books &
tbl loans) and store them all in the same object in order to form a collection. The purpose of this
is explained below in Home Controller.

e Home Controller
The Home Controller manages the necessary redirections to the proper html file. It also adds the
DTO collection as an attribute to the model and redirects user to borrow.html in case the user
wants to view the borrowed books.

@Controller

@Autowired
loanService;

@GetMapping("/")

() {
"index";

}
@GetMapping("/user")

RUSER:

}

@GetMapping("/admin")
0 {
"admin";

}
@GetMapping("/add")

nadd";
}

@GetMapping("/edit")

vedit";

}

@GetMapping("/showBorrow")
(Model model) {
List<DTO> borrowedBooks = loanService.getBorrowedBooks();
model.addAttribute("borrowedBooks", borrowedBooks);
"borrow";

e Book Service
Book Service implements the necessary functions to interact with the database.

@Service
e @Autowired
BookRepository bookRepository;
List< >

0 1
bookRepository.findAll();

(id) {
bookRepository.findById(id).orElse(DA

(book) {
bookRepository.save(book);

id) {
bookRepository.deleteById(id);

List< > (title) {
bookRepository.findByTitleContainingIgnoreCase(title);

	Library Web System
	Spring Boot Web-App
	Course Name & Code: Web Programming - SEN3004
	Authors:
	●​Atena Jafari Parsa
	●​Baraah Ammar Mohammed Al-shiaani

