
MLOPS TERM
PROJECT

Pima Indians Diabetes Prediction System
by Atena Jafari Parsa



Problem:
Predict whether a person has diabetes based on health indicators

Dataset:
Pima Indians Diabetes Dataset (Kaggle)

768 samples
8 input features
Target: Outcome → 0 (No diabetes), 1 (Diabetes)

Why this dataset?
Structured, clean, interpretable
Real-world healthcare relevance
Ideal for quick experimentation and lifecycle demos

Exploratory Data Analysis (EDA)



Training Process:
Used train_model.py for baseline (Logistic
Regression)
Used train_multiple_models.py to train 5 models:
Random Forest, SVM, Logistic Regression, Decision
Tree, KNN

MLflow Tracking:
Logged parameters, metrics, and models
Visualized runs and comparisons in MLflow UI

Model Registry:
Registered best model (Random Forest) as
BestDiabetesModel
Promoted version 1 to Production

Hyperparameter Tuning:
Tried tuning RF with tune_hyperparams.py
But original model had higher accuracy, so tuning
result was not promoted

⚙️ MLOps Pipeline with MLflow



Hyperparameters Tuning

10 different combination were randomly tried
(n_iter=10) and for each one, the training was split into
3 parts. 2 parts used for training and one for testing (3-
fold cross validation)

The best version with the highest accuracy (the best
combination from the hyperparameters space) was
picked. The hyperparameters combination in the
registered tune model, gave the highest accuracy
comparing to the other 9 random hyperparameter
combinations.

Why Tuning made it worse?
Scikit-learn’s default RandomForestClassifier() already uses good defaults:

n_estimators=100, max_features='sqrt', etc.
So tuning didn’t have much room to improve — and could easily overfit.

Tuning adds randomness and with only 10 combinations (n_iter=10),
there’s no guarantee that better settings are tested.

Small dataset = high variance → overfitting on cross-validation folds.
Very deep trees (max_depth=20)

Fewer samples per split (min_samples_split=2)
These can lead to complex trees that overfit on small data.



📈 Results & Monitoring

Best Model: Random Forest Classifier
Accuracy: 77.27%
Deployment: Served via Flask API (deploy_model.py)
Accessible at localhost: 5003/predict
Promoted to Production Stage as BestDiabetesModel

Monitoring:
Simulated 5 live requests using monitor_model.py
Logged: 

Input data
Prediction result
Latency (response time)
Timestamp

Saved logs in prediction_monitoring_log.csv



https://github.com/AtenaJP22/MLOps-Term-Project

https://www.notion.so/MLOps-Term-Project-
1de9e2cf8572801cbe01d3383159545f?pvs=4

My Github Repository:

My Notion Report:

https://www.kaggle.com/datasets/uc
iml/pima-indians-diabetes-database

Dataset Retrieved from:


