MLOps Term Project: Pima
Diabetes Prediction System

Development and Evaluation of a Machine Learning
Lifecycle Management System
using MLflow

Author: Atena Jafari Parsa

Course: AIN3009- Delivering Al Applications with MLOps

MLOps Term Project: Pima Diabetes Prediction System



Table of Contents

Abstract

Introduction

Dataset & Domain Selection

Project Structure

ML Model Development & Experiment Tracking with MLflow
Registering the Best Model on MLflow
Hyperparameter Tuning

Model Deployment

Performance Monitoring

Conclusion

My Github Repository

References

Abstract

This project aims to develop a complete machine learning lifecycle management
system using MLflow, an open-source platform. Focusing on a domain-specific
dataset (Al in Healthcare), | will implement a predictive ML model (classification
task for diabetes) and manage its end-to-end lifecycle, including training,
hyperparameter tuning, deployment, performance monitoring, and model
versioning. The system will offer transparency, reproducibility, and modularity
aiming for scalable and maintainable machine learning applications.

MLOps Term Project: Pima Diabetes Prediction System



Introduction

The lifecycle of a machine learning model involves multiple stages: data
preparation, model training, parameter tuning, deployment, monitoring, and
version control. Managing these stages manually is often prone to errors and
inefficient during production.

MLflow is a powerful open-source platform that handles this process by offering
tools for experiment tracking, model packaging, serving, and registry.

In this project, | will leverage MLflow to implement a robust and reproducible ML
pipeline tailored to a specific domain (Al in healthcare). This report documents the
setup, execution, and evaluation of my ML system, demonstrating how MLflow
can be integrated into real-world machine learning workflows.

Project Objectives

1. Experiment Tracking: The developed system will Implement and demonstrate
how MLflow can be used to track different experiments, including logging
parameters, metrics, and outputs.

2. Model Training and Tuning: I'll develop ML models and use MLflow to log
different training sessions
with varying parameters and hyperparameter tuning processes.

3. Model Deployment: The trained model will be packaged using MLflow’'s model
packaging tools and deployed as a service for real-time or batch predictions.

4. Performance Monitoring: The deployed model's performance will be
monitored overtime, utilizing MLflow to track drifts in model metrics.

5. Model Registry: | will use MLflow's Model Registry to manage model versions
and lifecycle including
stage transitions like staging and production.

Dataset & Domain Selection

MLOps Term Project: Pima Diabetes Prediction System



The selected domain is Al in Healthcare as diverse Al and ML-related datasets are
available in that domain. | found The Pima Indians Diabetes Database from
kaggle. It is well-structureed, interpretable and suitable for applying experiment
tracking, model training, hyperparameter tuning, and deployment. The target
variable is "Outcome” (0 = No diabetes, 1 = Diabetes). The features include
Glucose, BMI, Age, Blood Pressure, Insulin, etc.

There are ~768 rows and 9 columns in total which is good for fast
experimentation.

Project Structure
TermProject_MLOps/

|
— data/

| L— diabetes.csv # The dataset used for training and evaluation
— notebooks/
| |— eda.ipynb # Exploratory Data Analysis notebook

| L— miflow_pipeline.ipynb # Full ML pipeline: training, tracking, registering

|
— scripts/

| |— deploy_model.py # Flask API to deploy the best model for
predictions

| |— monitor_model.py # Script to simulate API requests and log
predictions

| |— register_best_model.py # Script to register the best model to MLflow
registry

| |— train_model.py # Train a single baseline model (Logistic

Regression)
| |— train_multiple_models.py # Train and compare multiple ML models (RF,

SVM, etc.)
| L— tune_hyperparams.py # Tune Random Forest hyperparameters and
log results
|—— mliruns/ # MLflow artifacts and experiment tracking directory

MLOps Term Project: Pima Diabetes Prediction System


https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

(auto-generated)

|
—

README.md # Project overview, setup instructions, usage guide
— requirements.txt # Python dependencies needed to run the project

Data & eda.ipynb Notebook

"diabetes.csv" is the raw data and eda.ipynb is meant to explore the general
structure of the dataset and detect missing values and anomalies as well as
understanding the features' relationships with the target variable.

After importing the necessary libraries, the dataset is loaded and the first 5 rows
are shown.

# Load dataset
df = pd.read_csv("../data/diabetes.csv")
df.head()

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Outcome
72 33.6 0.627 1
66 26.6 0.351
64 233 0.672
66 28.1 0.167
40 431 2.288

0
1
0
1

As shown above, the first feature is the number of pregnancies which
demonstrates that the data belongs to Indian Women. In fact, it is written on
kaggle that: “...all patients here are females at least 21 years old of Pima Indian
heritage.”" More details on the exploratory data analysis is available in eda.ipynb.

ML Model Development & Experiment Tracking with MLflow
Training the Model

In “train_model.py”, after importing the necessary libraries (also written in
requirements.txt), the dataset has to be loaded. Then, just to be more careful, Os

MLOps Term Project: Pima Diabetes Prediction System


http://readme.md/

are replaced with NaN for specific columns and then filled with the median value
of that column.

e Split

To prepare the data for training the machine learning model, the “Outcome”
column has to be dropped and saved to “X" which will hold all the input features.
The "Outcome” feature (whether the patient has diabetes or not) will be saved to
"y" as it would be what the model will try to predict (the dependent variable).
Then, the actual splitting process takes place here:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=

This part splits the data into two parts:
e X_train, y_train: for training the model
o X_test, y_test: for testing the model afterward
test_size=0.2 means that 20% of the data is for testing and 80% is for training.

random_state=42 ensures that the split is the same every time you run it
(reproducibility).

o MLflow
After starting MLflow, and starting the MLflow experiment “Pima Indians Diabetes
Prediction”, a folder with the same name as the experiment will be created on
MLflow where all the training results will be saved.

with miflow.start_run():

By starting a new “run”, everything inside the block below will be tracked:
parameters, scores, models, etc.

model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)

MLOps Term Project: Pima Diabetes Prediction System



This part of the code creates a Logistic Regression model, which is great for
binary classifications and yes/no predictions like diabetes. “max_iter=1000" tells
the model to take more time to try and find the best answer if needed.

"fit()" is where the model learns from the training data.

miflow.log_metric("accuracy", acc)

This part saves a score/result of how accurate and well the model did. It is a
metric or something the model achieved.

miflow.sklearn.log_model(model, "model")

This part saves the actual trained model into MLflow and anyone else will be able
to download, reuse or deploy it later.

print(f"Model accuracy: {acc}")

This line prints the accuracy in the terminal.

In other words, MLflow gives a project history which is very useful when
comparing models or explaining how they work.

The script “train_model.py"” was successfully run, meaning that a new MLflow
experiment was created, the model was trained, the parameters, metrics and the
model itself were logged, and a baseline accuracy of ~75.3% was achieved as
shown in the screenshot below.

MLOps Term Project: Pima Diabetes Prediction System



myenv) (base) atenaparsa@Atenas—MacBook-Pro TermProject_MLOps % /opt/anaconda3/envs/myenv/b
in/python /Users/a

tenaparsa/TermProject_MLOps/scripts/train_model.py

2025/04/23 21:06:28 INFO mlflow.tracking.fluent: Experiment with name 'Pima Indians Diabetes
Prediction' does not exist. Creating a new experiment.

Model accuracy: 0.7532467532467533

| started the MLflow Ul on port 5001 and here is the Pima Indians Diabetes
Prediction:

ml C 2213 Experiments Models

Experiments ® I

Search experiments

v

127001 @ ¢ ®© M + O

@ = MLOps Term Project ) MLflow

ml [ 2213 Experiments Models Prompts C GitHub Docs

illustrious-elk-917

Overview  Model metrics ~ System metrics  Traces Artifacts

Description

No
Details
Created at 04/23/2025, 09:06:28 PM
Created by
Experiment ID 717517038962129814 [
Status
Run ID e69d23ee17bd4145856¢228e70ceedd [P
Duration 2.2s
Datasets used -
Tags
Source () train_model.py
Logged models
Registered models

Registered prompts

Parameters (2) Metrics (1)

Q Sea Qs

Parameter Value Metric Value

model_type LogisticRegression 0.7532467532467533

max_iter 1000

MLOps Term Project: Pima Diabetes Prediction System



All the information about this experiment including the accuracy, source, model
type (logistic regression) and experiment status are logged!

The first full MLflow lifecycle step is now officially completed. Now, let's train the
second model for comparison. For more simplicity, | created a new script called
“train_multiple_models.py”. The process is similar to the one explained earlier.
However, multiple models are defined in this case:

# Define models

models = {
"LogisticRegression": LogisticRegression(max_iter=1000),
"DecisionTreeClassifier": DecisionTreeClassifier(),
"RandomForestClassifier": RandomForestClassifier(),
"KNeighborsClassifier": KNeighborsClassifier(),
"SupportVectorMachine": SVC()

5 models are defined this time, a logistic regression model (it will be the same as
the one explained before), a decision tree classifier, a random forest classifier, a
KNeighbors classifier and a support vector machine (SVC). Then, the MLflow
experiment that was created before will be started again and there will be a loop
through the models so that all five models are trained (with .fit() ), tested
(model.predict(X_test) ), evaluated by the accuracy score, and lastly logged.

After running the script, here are all the models in the experiment Pima Indians
Diabetes Prediction on the MLflow Ul:

MLOps Term Project: Pima Diabetes Prediction System



Pima Indians Diabetes Prediction © Frrovide Feedback [ Add Description

Runs Evaluation Experimental Traces

= I~ Q metrics.rmse < 1 and par .model = "tree" ® Time created v State: Active v v =y Sort: Created v

[ Columns v Groupby v
Metrics Parameters
Run Name Created =} Dataset Source Models accuracy model_type
51 minutes ago - () train_m... 0.7662337... SupportVe...
51 minutes ago - (A train_m... 0.6753246... KNeighbors...
51 minutes ago - (A) train_m... 3 0.7727272... RandomFor...
51 minutes ago = [n) train_m... 0.7077922... DecisionTre...
51 minutes ago - . (A train_m... S 0.7532467... LogisticReg...

1 day ago - 5 (A) train_m... 3 0.7532467... LogisticReg...

As shown above, the highest accuracy belongs to the random forest classifier.
The models are ordered like this based on accuracy:

Random Forest Classifier > SVM > Logistic Regression > Decision Tree Classifier
> KNeighbor Classifier

Thus, the random forest classifier will be promoted as the primary model. | will
take it through the next stages of the MLOps lifecycle.

Registering the Best Model on MLflow

To register the best model in the model registry, | created a new script called
register_best_model.py. Each time | try to run a new script, because it tries
starting the MLflow experiment all over again, | have to restart the MLflow Ul
through the terminal with this command:

miflow ui --port 5001

It would be easier to both train all models and register the best model in the same
script. But | am trying to keep this project simple, explanatory and modular as | am
still learning to work with MLflow. Plus, | am aiming for reusability so that | can re-
train or re-load best models separately.

MLOps Term Project: Pima Diabetes Prediction System

10



M < 127004 ¢ ® f +

@ &= MLOps Term Project

M7 /O W 2215 Experiments Models  Prompts 1) C GitHub Docs

Best Random Forest Model

04/25/2025, 01:28:28 AM
717517038962129814 [

fac8728326ef40baae8e244373c9622 [
2.2s

() register_best_model.py
Logged models
Registered models -3 vi

Registered prompts

m

Value

RandomForestClassifier

As you can see, best random forest model has been registered.

At the end of this stage, the best model was trained, logged to MLflow, and
registered it under BestDiabetesModel.

mliflow_pipeline.ipynb

This notebook was created for the presentation. It includes the basic steps, setup,
loading the data, train/test split, MLflow experiment set up, and lastly train and
logging the models. These tasks are thoroughly done in the scripts. Then,
tune_hyperparams.py, register_best_model.py, and deploy_model.py will be the
only ones left to explain.

Tuning the Hyperparameters

In tune_params.py, after the basic steps of loading the dataset, cleaning the data
and splitting into training and testing, firstly, a hyperparameter space is defined as

MLOps Term Project: Pima Diabetes Prediction System

1



shown below:

# Define hyperparameter space
param_dist = {
'n_estimators': [50, 100, 150, 200, 250],
'max_depth': [None, 5, 10, 15, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],

Different options are defined for the number of estimators in the random forest,
the maximum depth (that the decision trees go in when trying to divide the data
into pure groups by asking “questions”) and minimum samples split and minimum
samples leaf.

Of the hyperparameters space, 10 different combination will be randomly tried
(n_tier=10) and for each one, the training will be split into 3 parts. 2 parts will be
used for training and one will be used for testing. This is executed by 3-fold cross
validation. Lastly, the best version with the highest accuracy (the best
combination from the hyperparameters space) will be picked and remembered.

# Run tuning with RandomizedSearchCV
rf = RandomForestClassifier(random_state=42)

random_search = RandomizedSearchCV/(rf, param_distributions=param_dist, n_it
random_search.fit(X_train, y_train)

# Best model found
best_rf = random_search.best_estimator_

Then, the picked model will be evaluated on test data that it has not seen before:

# Test the best model on test set
y_pred = best_rf.predict(X_test)

MLOps Term Project: Pima Diabetes Prediction System 12



acc = accuracy_score(y_test, y_pred)
print(f"Tuned Random Forest Accuracy: {acc:.4f}")

Finally, everything will be logged to MLflow, what settings were used, the
accuracy, and the trained model itself, which could be deployed later.

As shown in the screenshot below, the first model from above is the Tuned
Random Forest. The hyperparameters that were randomly selected are 15 for
maximum depth of the decision trees, 4 for minimum sample leaf, 10 for minimum
sample split and 200 as the number of estimators. These hyperparameters
combination gave the highest accuracy comparing to the other 9 random
hyperparameter combinations.

Metrics Parameters

Run Name Created =y Models accuracy max_depth max_iter min_samples_| min_samples_¢ model_type n_estimators
@ Tuned Random Forest @ 2 days ago % Best Random Forest Mo... 0.7662337... 15 - 4 10 - 200

Best Random Forest Mo.. () 6 days ago D BestDiabetesModel... +1 - - - - - RandomFor...
@ SupportVectorMachine (© 6 days ago P sklearn 0.7662337... - - - - SupportVe...
@ KNeighborsClassifier @ 6 days ago ﬁ sklearn 0.6753246... - - - - KNeighbors...
@ RandomForestClassifier @ 6 days ago ﬁ sklearn 0.7727272... - - - - RandomFor...
@ DecisionTreeClassifier @© 6 daysago %R sklearn 0.7077922.. - - - - DecisionTre...
@ LogisticRegression (© 6 days ago T sklearn 0.7532467... - - - - LogisticReg...

@ illustrious-elk-917 @ 8 days ago ﬁ sklearn 0.7532467... - 1000 - - LogisticReg...

Findings
The accuracy of the random forest model was around 0.7727 before
hyperparameter tuning. Interestingly, it decreased after hyper parameter tuning to

around 0.76! This could be caused by the data not being very large (769 records).
Thus, the original random forest model will be deployed instead of the tuned one.

Model Deployment

Here are all the models with their accuracy including the tuned one. The best one
is still the original random forest model that was already registered as explained in
Registering the Best Model on MLflow section.

MLOps Term Project: Pima Diabetes Prediction System

13



ml 2213 Experiments Models Prompts % GitHub Docs

Experiments ® & Pima Indians Diabetes Prediction © Provide Feedback [ Add Description
Search experiments Runs  Evaluation Traces
Default vl
El v Q metrics.rmse < 1 and params.model = "tree" 6} Time created v State: Active v M = Sort: Created v H ~+ New run
Pima Indians Diabetes Prediction 7]

[ columns v B eroupby v

Metrics
Run Name Created =, Dataset Duration  Source Models aceuracy
@ Tuned Random Forest @© 2daysago - 195 (R tune_hy...  F Best Random ForestMo..  0.7662337..
Best Random Forest Mo, © 6daysago - 2.2s () register..  §% BestDiabetesModel v1 -

@ SupportVectorMachine (@ 6 days ago - 1.45 (R train, 58 sklearn 0.7662337...
@ KNeighborsClassifier @© 6 days ago - 155 [ trainm..  §R sklearn 0.6753246
@ RandomForestClassifier (2 6 days ago - 165 @trainm.. 3 sklearn 07727272...
@ DecisionTreeClassifier © 6 days ago - 1.5s ([ train_m... R sklearn 0.7077922...
@ LogisticRegression © 6days ago - 2.2s [ train_m.. R sklearn 0.7532467...
@ illustrious-elk-917 (@ 7 days ago - 2.2s [ train_m..  §3 sklearn 0.7532467...

The highest accuracy belongs to the original random forest model below and it
has already been registered. Let's promote this model to the production stage.

MLOps Term Project: Pima Diabetes Prediction System



ml//c

2213 Experiments Models Prompts @ & CitHub Docs

Pima Indians Diabetes Prediction >

Best Random Forest Model :

Overview

Description /

No description
Details
Created at
Created by
Experiment ID
Status
RunID
Duration
Datasets used
Tags
Source

Logged models

Registered models

Model metrics

Model registered [

System metrics Traces Artifacts

04/25/2025, 01:28:28 AM

atenaparsa

717517038962129814 [

® Finished
fac8728326ef40baae8e24437f3c9622 [

2.2s

Add tags
(R register_best_model.py
2 sklearn

%5 BestDiabetesModel v1

Registered prompts -

To promote this version of the random forest model, it has to be copied either to
an already existing model, or a new one has to be created.

MLOps Term Project: Pima Diabetes Prediction System

15



ml C 2213 Experiments Models Prompts @D ¥ GitHub Docs

Registered Models > BestDiabetesModel »

Version

Registered At: 04/25/2025, 01:28:30 AM Last Modified: 04/25/2025, 01:28:30 AM
Source Run: Best Random Forest Model Aliases: Add

Stage (deprecated): None ®
New model registry Ul @)

> Description Edit
> Tags
v Schema

Name Type
Inputs (8)

Outputs (1)

The model is promoted as the Best Diabetes Model Version 1as shown below.

Promote BestDiabetesModel version 1 X

Copy your MLflow models to another registered model for simple model promotion across
environments. For more mature production-grade setups, we recommend setting up automated
model training workflows to produce models in controlled environments. Learn more [4

Copy to model

BestDiabetesModel v

The model version will be copied to BestDiabetesModel as a new version.

Cancel Promote

MLOps Term Project: Pima Diabetes Prediction System

16



Then, through deploy_model.py, the registered best model which is supposed to
be in the production stage now, is first loaded:

# Load the registered best model
model = miflow.sklearn.load_model(model_uri="models:/BestDiabetesModel/Pro

Then a Flask app is initialized and input data is requested in json format (pandas
dataframe) and the prediction integer is posted in the 5003 port, as written in
deploy_model.py .

Performance Monitoring

In order to simulate real-world usage of the deployed modelcand to log how it
performs, it is a good idea to send repeated predictions, measure response time,
record what was sent and what was predicted an save them all to a csv file for
monitoring and analysis.

In monitor_model.py, there is an example test data for this purpose.

# Simulated test data

sample = {
"Pregnancies": 2,
"Glucose": 130,
"BloodPressure": 70,
"SkinThickness": 25,
"Insulin": 80,
"BMI": 28.0,
"DiabetesPedigreeFunction": 0.35,
"Age": 35

This test patient input will be sent to the model and it will simulate what a user
might input in the real world. To store each prediction’s result along with time and
latency, " logs =[] " is used.

With a for loop, the number of the requests is simulated which is 5 in this case.

MLOps Term Project: Pima Diabetes Prediction System



The sample data is sent to the Flask API.
response = requests.post("http://localhost:5003/predict", json=sample)

Lastly, after grabbing the prediction result ( 0 or 1), the time the process took and
the current time for the log. Also, 2 seconds is paused to mimic real time between
users.

After all 5 predictions are done, the list is turned into a table (data frame) and it is
saved into a CSV file to track model performance later.

Conclusion

This MLOps project successfully implemented a complete machine learning
lifecycle for diabetes prediction using MLflow. The key achievements include:

o Development and comparison of 5 different classification models, with
Random Forest achieving the highest accuracy (77.27%)

» Implementation of model tracking, versioning, and registration using MLflow

» Exploration of hyperparameter tuning, though the original model outperformed
the tuned version

e Deployment of the best model using Flask API
o Creation of a monitoring system to track model performance and latency

The project demonstrates the practical application of MLOps principles in
managing the full lifecycle of a machine learning model, from development
through deployment and monitoring.

My Github Repository

https://github.com/AtenadP22/MLOps-Term-Project

MLOps Term Project: Pima Diabetes Prediction System

18



References
Dataset Retrieved from:

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

MLOps Term Project: Pima Diabetes Prediction System

19


https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

